|  | @@ -33,6 +33,7 @@ class RetrievalService:
 | 
	
		
			
				|  |  |              return []
 | 
	
		
			
				|  |  |          all_documents = []
 | 
	
		
			
				|  |  |          threads = []
 | 
	
		
			
				|  |  | +        exceptions = []
 | 
	
		
			
				|  |  |          # retrieval_model source with keyword
 | 
	
		
			
				|  |  |          if retrival_method == 'keyword_search':
 | 
	
		
			
				|  |  |              keyword_thread = threading.Thread(target=RetrievalService.keyword_search, kwargs={
 | 
	
	
		
			
				|  | @@ -40,7 +41,8 @@ class RetrievalService:
 | 
	
		
			
				|  |  |                  'dataset_id': dataset_id,
 | 
	
		
			
				|  |  |                  'query': query,
 | 
	
		
			
				|  |  |                  'top_k': top_k,
 | 
	
		
			
				|  |  | -                'all_documents': all_documents
 | 
	
		
			
				|  |  | +                'all_documents': all_documents,
 | 
	
		
			
				|  |  | +                'exceptions': exceptions,
 | 
	
		
			
				|  |  |              })
 | 
	
		
			
				|  |  |              threads.append(keyword_thread)
 | 
	
		
			
				|  |  |              keyword_thread.start()
 | 
	
	
		
			
				|  | @@ -54,7 +56,8 @@ class RetrievalService:
 | 
	
		
			
				|  |  |                  'score_threshold': score_threshold,
 | 
	
		
			
				|  |  |                  'reranking_model': reranking_model,
 | 
	
		
			
				|  |  |                  'all_documents': all_documents,
 | 
	
		
			
				|  |  | -                'retrival_method': retrival_method
 | 
	
		
			
				|  |  | +                'retrival_method': retrival_method,
 | 
	
		
			
				|  |  | +                'exceptions': exceptions,
 | 
	
		
			
				|  |  |              })
 | 
	
		
			
				|  |  |              threads.append(embedding_thread)
 | 
	
		
			
				|  |  |              embedding_thread.start()
 | 
	
	
		
			
				|  | @@ -69,7 +72,8 @@ class RetrievalService:
 | 
	
		
			
				|  |  |                  'score_threshold': score_threshold,
 | 
	
		
			
				|  |  |                  'top_k': top_k,
 | 
	
		
			
				|  |  |                  'reranking_model': reranking_model,
 | 
	
		
			
				|  |  | -                'all_documents': all_documents
 | 
	
		
			
				|  |  | +                'all_documents': all_documents,
 | 
	
		
			
				|  |  | +                'exceptions': exceptions,
 | 
	
		
			
				|  |  |              })
 | 
	
		
			
				|  |  |              threads.append(full_text_index_thread)
 | 
	
		
			
				|  |  |              full_text_index_thread.start()
 | 
	
	
		
			
				|  | @@ -77,6 +81,10 @@ class RetrievalService:
 | 
	
		
			
				|  |  |          for thread in threads:
 | 
	
		
			
				|  |  |              thread.join()
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +        if exceptions:
 | 
	
		
			
				|  |  | +            exception_message = ';\n'.join(exceptions)
 | 
	
		
			
				|  |  | +            raise Exception(exception_message)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  |          if retrival_method == 'hybrid_search':
 | 
	
		
			
				|  |  |              data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
 | 
	
		
			
				|  |  |              all_documents = data_post_processor.invoke(
 | 
	
	
		
			
				|  | @@ -89,82 +97,91 @@ class RetrievalService:
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      @classmethod
 | 
	
		
			
				|  |  |      def keyword_search(cls, flask_app: Flask, dataset_id: str, query: str,
 | 
	
		
			
				|  |  | -                       top_k: int, all_documents: list):
 | 
	
		
			
				|  |  | +                       top_k: int, all_documents: list, exceptions: list):
 | 
	
		
			
				|  |  |          with flask_app.app_context():
 | 
	
		
			
				|  |  | -            dataset = db.session.query(Dataset).filter(
 | 
	
		
			
				|  |  | -                Dataset.id == dataset_id
 | 
	
		
			
				|  |  | -            ).first()
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            keyword = Keyword(
 | 
	
		
			
				|  |  | -                dataset=dataset
 | 
	
		
			
				|  |  | -            )
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            documents = keyword.search(
 | 
	
		
			
				|  |  | -                query,
 | 
	
		
			
				|  |  | -                top_k=top_k
 | 
	
		
			
				|  |  | -            )
 | 
	
		
			
				|  |  | -            all_documents.extend(documents)
 | 
	
		
			
				|  |  | +            try:
 | 
	
		
			
				|  |  | +                dataset = db.session.query(Dataset).filter(
 | 
	
		
			
				|  |  | +                    Dataset.id == dataset_id
 | 
	
		
			
				|  |  | +                ).first()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +                keyword = Keyword(
 | 
	
		
			
				|  |  | +                    dataset=dataset
 | 
	
		
			
				|  |  | +                )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +                documents = keyword.search(
 | 
	
		
			
				|  |  | +                    query,
 | 
	
		
			
				|  |  | +                    top_k=top_k
 | 
	
		
			
				|  |  | +                )
 | 
	
		
			
				|  |  | +                all_documents.extend(documents)
 | 
	
		
			
				|  |  | +            except Exception as e:
 | 
	
		
			
				|  |  | +                exceptions.append(str(e))
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      @classmethod
 | 
	
		
			
				|  |  |      def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
 | 
	
		
			
				|  |  |                           top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
 | 
	
		
			
				|  |  | -                         all_documents: list, retrival_method: str):
 | 
	
		
			
				|  |  | +                         all_documents: list, retrival_method: str, exceptions: list):
 | 
	
		
			
				|  |  |          with flask_app.app_context():
 | 
	
		
			
				|  |  | -            dataset = db.session.query(Dataset).filter(
 | 
	
		
			
				|  |  | -                Dataset.id == dataset_id
 | 
	
		
			
				|  |  | -            ).first()
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            vector = Vector(
 | 
	
		
			
				|  |  | -                dataset=dataset
 | 
	
		
			
				|  |  | -            )
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            documents = vector.search_by_vector(
 | 
	
		
			
				|  |  | -                query,
 | 
	
		
			
				|  |  | -                search_type='similarity_score_threshold',
 | 
	
		
			
				|  |  | -                top_k=top_k,
 | 
	
		
			
				|  |  | -                score_threshold=score_threshold,
 | 
	
		
			
				|  |  | -                filter={
 | 
	
		
			
				|  |  | -                    'group_id': [dataset.id]
 | 
	
		
			
				|  |  | -                }
 | 
	
		
			
				|  |  | -            )
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            if documents:
 | 
	
		
			
				|  |  | -                if reranking_model and retrival_method == 'semantic_search':
 | 
	
		
			
				|  |  | -                    data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
 | 
	
		
			
				|  |  | -                    all_documents.extend(data_post_processor.invoke(
 | 
	
		
			
				|  |  | -                        query=query,
 | 
	
		
			
				|  |  | -                        documents=documents,
 | 
	
		
			
				|  |  | -                        score_threshold=score_threshold,
 | 
	
		
			
				|  |  | -                        top_n=len(documents)
 | 
	
		
			
				|  |  | -                    ))
 | 
	
		
			
				|  |  | -                else:
 | 
	
		
			
				|  |  | -                    all_documents.extend(documents)
 | 
	
		
			
				|  |  | +            try:
 | 
	
		
			
				|  |  | +                dataset = db.session.query(Dataset).filter(
 | 
	
		
			
				|  |  | +                    Dataset.id == dataset_id
 | 
	
		
			
				|  |  | +                ).first()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +                vector = Vector(
 | 
	
		
			
				|  |  | +                    dataset=dataset
 | 
	
		
			
				|  |  | +                )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +                documents = vector.search_by_vector(
 | 
	
		
			
				|  |  | +                    query,
 | 
	
		
			
				|  |  | +                    search_type='similarity_score_threshold',
 | 
	
		
			
				|  |  | +                    top_k=top_k,
 | 
	
		
			
				|  |  | +                    score_threshold=score_threshold,
 | 
	
		
			
				|  |  | +                    filter={
 | 
	
		
			
				|  |  | +                        'group_id': [dataset.id]
 | 
	
		
			
				|  |  | +                    }
 | 
	
		
			
				|  |  | +                )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +                if documents:
 | 
	
		
			
				|  |  | +                    if reranking_model and retrival_method == 'semantic_search':
 | 
	
		
			
				|  |  | +                        data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
 | 
	
		
			
				|  |  | +                        all_documents.extend(data_post_processor.invoke(
 | 
	
		
			
				|  |  | +                            query=query,
 | 
	
		
			
				|  |  | +                            documents=documents,
 | 
	
		
			
				|  |  | +                            score_threshold=score_threshold,
 | 
	
		
			
				|  |  | +                            top_n=len(documents)
 | 
	
		
			
				|  |  | +                        ))
 | 
	
		
			
				|  |  | +                    else:
 | 
	
		
			
				|  |  | +                        all_documents.extend(documents)
 | 
	
		
			
				|  |  | +            except Exception as e:
 | 
	
		
			
				|  |  | +                exceptions.append(str(e))
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      @classmethod
 | 
	
		
			
				|  |  |      def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
 | 
	
		
			
				|  |  |                                 top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
 | 
	
		
			
				|  |  | -                               all_documents: list, retrival_method: str):
 | 
	
		
			
				|  |  | +                               all_documents: list, retrival_method: str, exceptions: list):
 | 
	
		
			
				|  |  |          with flask_app.app_context():
 | 
	
		
			
				|  |  | -            dataset = db.session.query(Dataset).filter(
 | 
	
		
			
				|  |  | -                Dataset.id == dataset_id
 | 
	
		
			
				|  |  | -            ).first()
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            vector_processor = Vector(
 | 
	
		
			
				|  |  | -                dataset=dataset,
 | 
	
		
			
				|  |  | -            )
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            documents = vector_processor.search_by_full_text(
 | 
	
		
			
				|  |  | -                query,
 | 
	
		
			
				|  |  | -                top_k=top_k
 | 
	
		
			
				|  |  | -            )
 | 
	
		
			
				|  |  | -            if documents:
 | 
	
		
			
				|  |  | -                if reranking_model and retrival_method == 'full_text_search':
 | 
	
		
			
				|  |  | -                    data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
 | 
	
		
			
				|  |  | -                    all_documents.extend(data_post_processor.invoke(
 | 
	
		
			
				|  |  | -                        query=query,
 | 
	
		
			
				|  |  | -                        documents=documents,
 | 
	
		
			
				|  |  | -                        score_threshold=score_threshold,
 | 
	
		
			
				|  |  | -                        top_n=len(documents)
 | 
	
		
			
				|  |  | -                    ))
 | 
	
		
			
				|  |  | -                else:
 | 
	
		
			
				|  |  | -                    all_documents.extend(documents)
 | 
	
		
			
				|  |  | +            try:
 | 
	
		
			
				|  |  | +                dataset = db.session.query(Dataset).filter(
 | 
	
		
			
				|  |  | +                    Dataset.id == dataset_id
 | 
	
		
			
				|  |  | +                ).first()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +                vector_processor = Vector(
 | 
	
		
			
				|  |  | +                    dataset=dataset,
 | 
	
		
			
				|  |  | +                )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +                documents = vector_processor.search_by_full_text(
 | 
	
		
			
				|  |  | +                    query,
 | 
	
		
			
				|  |  | +                    top_k=top_k
 | 
	
		
			
				|  |  | +                )
 | 
	
		
			
				|  |  | +                if documents:
 | 
	
		
			
				|  |  | +                    if reranking_model and retrival_method == 'full_text_search':
 | 
	
		
			
				|  |  | +                        data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
 | 
	
		
			
				|  |  | +                        all_documents.extend(data_post_processor.invoke(
 | 
	
		
			
				|  |  | +                            query=query,
 | 
	
		
			
				|  |  | +                            documents=documents,
 | 
	
		
			
				|  |  | +                            score_threshold=score_threshold,
 | 
	
		
			
				|  |  | +                            top_n=len(documents)
 | 
	
		
			
				|  |  | +                        ))
 | 
	
		
			
				|  |  | +                    else:
 | 
	
		
			
				|  |  | +                        all_documents.extend(documents)
 | 
	
		
			
				|  |  | +            except Exception as e:
 | 
	
		
			
				|  |  | +                exceptions.append(str(e))
 |